Basal ganglia mechanisms of reward-oriented eye movement.
نویسنده
چکیده
Expectation of reward facilitates motor behaviors that enable the animal to approach a location in space where the reward is expected. It is now known that the same expectation of reward profoundly modifies sensory, motor, and cognitive information processing in the brain. However, it is still unclear which brain regions are responsible for causing the reward-approaching behavior. One candidate is the dorsal striatum where cortical and dopaminergic inputs converge. We tested this hypothesis by injecting dopamine antagonists into the caudate nucleus (CD) while the monkey was performing a saccade task with a position-dependent asymmetric reward schedule. We previously had shown that: (1) serial GABAergic connections from the CD to the superior colliculus (SC) via the substantia nigra pars reticulata (SNr) exert powerful control over the initiation of saccadic eye movement and (2) these GABAergic neurons encode target position and are strongly influenced by expected reward, while dopaminergic neurons in the substantia nigra pars compacta (SNc) encode only reward-related information. Before injections of dopamine antagonists the latencies of saccades to a given target were shorter when the saccades were followed by a large reward than when they were followed by a small reward. After injections of dopamine D1 receptor antagonist the reward-dependent latency bias became smaller. This was due to an increase in saccade latency on large-reward trials. After injections of D2 antagonist the latency bias became larger, largely due to an increase in saccade latency on small-reward trials. These results indicate that: (1) dopamine-dependent information processing in the CD is necessary for the reward-dependent modulation of saccadic eye movement and (2) D1 and D2 receptors play differential roles depending on the positive and negative reward outcomes.
منابع مشابه
Methodological Aspects of Cognitive Rehabilitation with Eye Movement Desensitization and Reprocessing (EMDR)
A variety of nervous system components such as medulla, pons, midbrain, cerebellum, basal ganglia, parietal, frontal and occipital lobes have role in Eye Movement Desensitization and Reprocessing (EMDR) processes. The eye movement is done simultaneously for attracting client's attention to an external stimulus while concentrating on a certain internal subject. Eye movement guided by therapist i...
متن کاملBasal ganglia orient eyes to reward.
Expectation of reward motivates our behaviors and influences our decisions. Indeed, neuronal activity in many brain areas is modulated by expected reward. However, it is still unclear where and how the reward-dependent modulation of neuronal activity occurs and how the reward-modulated signal is transformed into motor outputs. Recent studies suggest an important role of the basal ganglia. Senso...
متن کاملRole of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement.
To test the hypothesis that the basal ganglia are related to reward-oriented saccades, we examined activity of substantia nigra pars reticulata (SNr) neurons by using a one-direction-rewarded version of the memory-guided saccade task (1DR). Many SNr neurons changed (decreased or increased) their activity after and before a visual cue (post-cue and pre-cue activity). Post-cue decreases or increa...
متن کاملHow Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades Abbreviated Title: Frontal Cortex and Basal Ganglia Saccade Control
Acknowledgements J. Abstract How does the brain learn to balance between reactive and planned behaviors? The basal ganglia and frontal cortex together allow animals to learn planned behaviors that acquire rewards when prepotent reactive behaviors are insufficient. This paper proposes a new model, called TELOS, to explain how laminar circuitry of the frontal cortex, exemplified by the frontal ey...
متن کاملCaudate Clues to Rewarding Cues
Behavioral studies indicate that prior experience can influence discrimination of subsequent stimuli. The mechanisms responsible for highlighting a particular aspect of the stimulus, such as motion or color, as most relevant and thus deserving further scrutiny, however, remain poorly understood. In the current issue of Neuron, demonstrate that neurons in the caudate nucleus of the basal ganglia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of the New York Academy of Sciences
دوره 1104 شماره
صفحات -
تاریخ انتشار 2007